Additivi per calcestruzzo

Gli additivi per calcestruzzo – Capitolo 3

3.5 APPLICAZIONE DEGLI ADDITIVI RITARDANTI

Le applicazioni di questi additivi si basano sulla richiesta di prolungare il tempo di presa e conservare la lavorabilità iniziale.

Queste esigenze possono manifestarsi nelle seguenti condizioni:

  • trasporti a lunga distanza del calcestruzzo dall’impianto di betonaggio al cantiere particolarmente in climi caldi;
  • pompaggio di impasti cementizi per pozzi petroliferi dove si raggiungono in profondità temperature di oltre 90°C;
  • produzione di calcestruzzo con aggregati a vista mediante rimozione con acqua in pressione dello strato superficiale di pasta cementizia ritardata per applicazione dell’additivo su cassero (lacche ritardanti);
  • rallentamento nello sviluppo del calore di idratazione ed attenuazione dei gradienti termici in getti massivi (dighe, platee di fondazione, ecc.);
  • facilitazione della ripresa di getto, con eliminazione del giunto freddo, attraverso il ritardo nella presa del calcestruzzo gettato in precedenza;
  • conservazione dello stato plastico (“stabilizzazione”) del calcestruzzo di ritorno dai cantieri di betonaggio per un successivo reimpiego insieme ad altro calcestruzzo fresco dopo uno o più giorni;
  • blocco dell’idratazione dei residui di calcestruzzo all’interno delle betoniere con aggiunta di acqua e ritardante evitando la produzione di incrostazioni per riutilizzare il giorno dopo i residui di calcestruzzo senza necessità di trattare le acque di lavaggio.

La prima delle applicazioni sopra riportata è sicuramente la più consolidata, mentre le ultime due appaiono particolarmente interessanti in vista delle limitazioni imposte, a difesa dell’ambiente, per il trattamento dei residui solidi e delle acque di lavaggio nelle centrali di betonaggio.

3.5.1 L’IMPIEGO DEI RITARDANTI TRADIZIONALI

I ritardanti vengono normalmente impiegati per allungare i tempi di presa e per ridurre la perdita di lavorabilità del calcestruzzo durante il trasporto.

Nella Tabella 3.5 sono esemplificativamente mostrate le prestazioni di un additivo ritardante per quanto attiene al tempo di presa in diverse condizioni climatiche. Si può osservare che nel calcestruzzo non additivato i tempi di presa, ed in minor misura le resistenze meccaniche, sono fortemente influenzati dalla temperatura. In particolare, in climi caldi (per esempio a 35°C) i tempi di presa sono significativamente ridotti e questo può creare difficoltà di carattere esecutivo nella messa in opera del calcestruzzo. E’ proprio in queste condizioni che l’additivo ritardante fa sentire i suoi benefici ripristinando tempi di presa in cli- ma caldo paragonabili a quelli che si registrano nel calcestruzzo non additivato in condizioni climatiche meno avverse (20°C). Naturalmente, l’effetto del ritardante si fa sentire anche nei climi freddi (per esempio a 5°C) in misura più o meno eguale, percentualmente, a quella che si registra a temperature più alte.

Parallelamente al prolungamento dei tempi di presa, con l’additivo ritardante si registra una riduzione nella perdita di lavorabilità. Poiché è soprattutto alle alte temperature (25-35°C) che si verifica una perdita di lavorabilità incompatibile con un lungo trasporto del calcestruzzo dall’impianto di betonaggio al cantiere, è evidente come l’impiego dei ritardanti sia riservato prevalentemente alla stagione calda nel settore del calcestruzzo preconfezionato.

La Fig. 3.3 mostra esemplificativamente la perdita di lavorabilità alle diverse temperature (5-20-35°C) dello stesso calcestruzzo (additivato e non) riportato in Tabella 3.5.

Come conseguenza del prolungamento dei tempi di presa e della migliore conservazione della lavorabilità – entrambi legati ad un ritardo nell’idratazione iniziale del cemento (Fig. 3.1) – anche la resistenza meccanica del calcestruzzo su- bisce un rallentamento iniziale (1-3 giorni) per la presenza dei ritardanti: infatti, a pari rapporto a/c la resistenza meccanica risulta minore alle brevi stagionature per il minor grado di idratazione α; in realtà, il ritardante provoca sempre come effetto secondario, una leggera riduzione del rapporto a/c a pari slump che non è però sufficiente a compensare il ritardo nell’idratazione iniziale; pertanto, alle brevi stagionature il calcestruzzo con ritardante presenta una resistenza meccanica leggermente più bassa rispetto al calcestruzzo di riferimento non additivato (Tabella 3.1).

Alle lunghe stagionature (7 giorni), quando l’effetto del ritardante sul grado di idratazione (α) si annulla (Fig. 3.1), la resistenza meccanica torna ad essere governata (a parità di grado di idratazione) dal rapporto a/c. Pertanto, a pari slump, se il ritardante provoca come effetto secondario una riduzione nel rapporto a/c di almeno il 5% (Tabella 3.2), non si registra alcuna riduzione nella resistenza meccanica com’è evidenziato nei dati a 28 giorni della Tabella 3.5.

3.5.2 L’IMPIEGO DEI SUPER-RITARDANTI (“STABILIZZANTI”)

I super-ritardanti (6-9) rappresentano una categoria di additivi sviluppati più recentemente per risolvere soprattutto il problema del riutilizzo del calcestruzzo rientrato nella centrale di betonaggio o per impedire l’indurimento delle incrostazioni di calcestruzzo all’interno dell’autobetoniera. In questa applicazione gli additivi super-ritardanti sono chiamati “stabilizzanti”). Tuttavia, il loro impiego può essere esteso anche ad altre applicazioni particolari (per esempio riprese di getto, giunti da costruzione, ecc.) per le quali si intenda bloccare l’idratazione del cemento e quindi la presa del calcestruzzo per uno o più giorni.

In linea di massima, i super-ritardanti “stabilizzanti” sono basati sull’impiego di un dosaggio molto basso (0.03-0.09% di prodotto attivo come sostanza secca) di acidi fosfonici e loro sali sodici (Fig. 3.2B) per conseguire un arresto dell’idratazione del cemento di circa 1 giorno. Dosaggi maggiori consentono di bloccare l’idratazione per 2-3 giorni.

In una recente applicazione i super-ritardanti a base fosfonica (Fig. 3.2 B) sono stati proposti come materie prime per i superfluidificanti impiegati in calcestruzzi a lunga conservazione di lavorabilità (10).

In alternativa ai super-ritardanti fosfonici, possono essere impiegati gluconato di zinco (dove il ritardo è associato sia al gluconato che al catione metallico) o altre combinazioni organico-inorganico (per esempio gluconato di sodio e ossido di zinco, ZnO) a dosaggi molto maggiori (0.4-0.8%) di quelli normalmente impiegati per i tradizionali ritardanti (8). I super-ritardanti commerciali, che sono soluzioni acquose dei summenzionati principi attivi, vengono dosati allo 0.3% fi no ad un massimo dell’8% a seconda che contengano fosfonati o gluconati ed a seconda che si voglia “stabilizzare” lo stato plastico del calcestruzzo fino al giorno dopo o per il periodo del week-end (1).

Nella Fig. 3.4 è mostrato esemplificativamente l’effetto di un super-ritardante fosfonico (il DTPMP mostrato in Fig. 3.2 B) sul grado di idratazione del cemento in termini di calore cumulativo e di velocità di sviluppo del calore per idratazione del cemento.

Il picco termico che si registra nei primi 30 minuti sulla curva di sviluppo del calore (Fig. 3.4 A) è dovuto principalmente al calore che si libera per idratazione delle tracce di calce libera (CaO) e dalla formazione di ettringite sulla superficie del C3A; successivamente la velocità di sviluppo del calore si blocca (periodo di induzione) e quindi si registra (Fig. 3.4 B) un secondo grande picco (dovuto all’idratazione del C3S).

La presa del cemento ha inizio dopo il periodo di induzione e prima del secondo picco termico. La presa del cemento senza additivo ha inizio a circa 2-3 ore, mentre quella in presenza di 0.05% di super-ritardante corrisponde grosso modo a 24 ore. Tuttavia, da un punto di vista pratico è conveniente sperimentare, direttamente sullo specifico calcestruzzo da trattare, l’effetto di un additivo a diversi dosaggi fino ad ottenere il ritardo desiderato in relazione anche alla temperatura ambientale: ovviamente, a parità di ritardo desiderato, il dosaggio richiesto è tanto maggiore quanto maggiore è la temperatura dell’ambiente.

Nell’impiego dei super-ritardanti destinati al riutilizzo del calcestruzzo non impiegato, va anche tenuto conto delle esigenze di resistenza meccanica alle brevi stagionature. In genere, il calcestruzzo che ritorna in centrale di betonaggio, in quanto non impiegato in cantiere, difficilmente supera il 10-20% della capacità dell’autobetoniera. Esso, pertanto, il giorno dopo viene mescolato con altro calcestruzzo fresco che risulta quantitativamente prevalente rispetto al calcestruzzo del giorno prima “bloccato” nello stato plastico con il super-ritardante.

Il dosaggio di additivo, oltre che con la temperatura e con il tempo di ritardo desiderato, va commisurato con il rapporto tra la quantità di calcestruzzo da “bloccare” provvisoriamente allo stato plastico e quella del calcestruzzo “vergine” preparato all’istante il giorno dopo: maggiore è questo rapporto, minore dovrà essere il dosaggio di super-ritardante per evitare che la miscela dei due calcestruzzi debba subire un ritardo eccessivo nello sviluppo della resistenza meccanica alle brevi stagionature. Alternativamente, se il dosaggio di additivo (richiesto per un “blocco” prolungato della presa nel calcestruzzo non impiegato) è incompatibile con lo sviluppo della resistenza meccanica iniziale nella miscela dei due calcestruzzi, occorre diluire il calcestruzzo contenente il super- ritardante con un maggior volume di calcestruzzo “vergine”.

E’ ovvio che, tenuto conto della specifica reattività dell’additivo super-ritardante con i vari tipi e classi di cemento, in relazione alle diverse situazioni (dosaggio di cemento, temperatura, resistenza meccanica iniziale richiesta, ecc.), è assolutamente necessario far precedere l’impiego routinario di questa tecnica da un’accurata sperimentazione di campo al fine di calibrare adeguatamente il dosaggio di super-ritardante, generalmente raccomandato dal produttore dell’additivo, in funzione delle varie e specifiche esigenze e situazioni.

Una tecnica che consente una maggiore “elasticità” nel determinare l’effetto “stabilizzante” dei super-ritardanti, consiste nel “riattivare” l’idratazione del cemento “stabilizzato” mediante l’aggiunta posticipata di un additivo accelerante (Capitolo IV) che compensi o annulli immediatamente l’effetto del super- ritardante.

Anche l’impiego del super-ritardante per il riutilizzo della acque di lavaggio conservate in autobetoniera richiede un’accurata sperimentazione preliminare per calibrare adeguatamente il dosaggio di additivo raccomandato dal produttore alle specifiche esigenze e condizioni ambientali (tipo e classe di cemento, temperatura, ecc.).

In particolare, l’acqua di impasto per la prima miscela di calcestruzzo dovrà essere sostituita in tutto o in parte da quella conservata in autobetoniera dal giorno prima per la “stabilizzazione” e la rimozione delle incrostazioni di calcestruzzo dalle superfici interne del mezzo.

Gli additivi per calcestruzzo – Capitolo 2

1.1 ADDITIVI RIDUTTORI D’ACQUA

Le principali proprietà del calcestruzzo indurito (resistenza meccanica, durabilità, permeabilità, ecc.) dipendono sostanzialmente dalla qualità della matrice cementizia (pasta) che avvolge i singoli granuli di aggregato fine (sabbia) o grosso (ghiaia o pietrisco).
In particolare, una pasta di cemento densa e compatta, cioè con una porosità capillare così ridotta da diventare discontinua, è in grado di assicurare un conglomerato di alta qualità purché, come in generale si verifica, gli aggregati siano essi stessi chimicamente “sani”, densi, compatti e meccanicamente resistenti.
I parametri sui quali è possibile agire per ridurre la porosità capillare (Vp) ed aumentare conseguentemente la resistenza meccanica a compressione (Rc) sono:
• il grado di idratazione del cemento (α);
• il rapporto acqua/cemento (a/c).
Parallelamente all’aumento della resistenza meccanica a compressione, con il diminuire del rapporto a/c si registrano gli aumenti delle altre proprietà meccaniche (resistenza a flessione ed a trazione, modulo elastico) il miglioramento della durabilità e la riduzione della permeabilità all’acqua.
La teoria sviluppata da Powers (2) consente di correlare i due suddetti parametri (α ed a/c) con la resistenza meccanica a compressione (Rc) assunta come misura della qualità del calcestruzzo e comprensiva, quindi, anche delle altre proprietà sopra menzionate. Secondo questa teoria, supportata da misure sperimentali, è possibile correlare α ed a/c con Vp (misurato in litri di pori capillari per 100 kg di cemento) oppure con Rc attraverso le seguenti equazioni:

dove n è una costante che vale 2.7 e K una costante che dipende dal tipo di cemento e dalle unità di misure adottate: misurando Rc in N/mm2, K vale circa 250 per un cemento Portland puro e fi nemente macinato equivalente ad un cemento di classe 52.5 R.
Dalle equazioni [2.1] e [2.2] si deduce immediatamente che, per ridurre la porosità capillare (Vp ↓) ed aumentare la resistenza meccanica (Rc ↑), è necessario aumentare il grado di idratazione del cemento (α ↑) e diminuire il rapporto acqua/cemento (a/c↓):

α ↑, (a/c) ↓  Vp↓, Rc↑

Si discuterà più avanti, nei Capitoli 3 e 4 — riguardanti rispettivamente gli additivi ritardanti ed acceleranti — la specifica azione del parametro α sulla porosità e sulla resistenza meccanica. In questo paragrafo l’attenzione verrà rivolta soprattutto al rapporto a/c e quindi all’azione di quegli additivi capaci appunto di diminuire questo parametro e detti appunto riduttori d’acqua.
La ragione per la quale la riduzione di acqua di impasto (e quindi del rapporto a/c a parità di dosaggio di cemento) si tramuta in un benefico effetto consolidante sulla matrice cementizia e conseguentemente sulle proprietà di tutto il conglomerato, è illustrata nella Fig. 2.1. In questa fi gura si rappresenta la situazione schematica limitatamente a due granuli di cemento adiacenti in due condizioni comparativamente diverse per il rapporto a/c (A e B), quando l’idratazione non è ancora iniziata (α = 0) e quando il cemento si è idratato per circa la metà (α = 0.5). Per semplicità, il cemento idratato è rappresentato soltanto da elementi fibrosi, che si formano per idratazione dei silicati di calcio presenti nel cemento Portland, dall’intreccio dei quali derivano la rigidità, la resistenza meccanica, l’impermeabilità, ecc. del materiale indurito.
La maggiore quantità di acqua comporta una maggiore distanza tra i granuli di cemento e quindi, a parità di grado di idratazione (α = 0.5), i cristalli fibrosi del cemento idratato appaiono meno intrecciati.

Nella Fig. 2.2 è mostrata l’influenza del rapporto a/c sulla morfologia di una pasta di cemento a parità di tempo di stagionatura (5 ore) e quindi di α; la microstruttura della pasta B con il rapporto a/c più basso appare molto meno porosa, più densificata, quindi meno permeabile e più resistente meccanicamente per il minor contenuto del volume (Vp) di pori capillari.
In conseguenza della riduzione del rapporto a/c entro un determinato intervallo (per esempio 0.80-0.30) e della modifica microstrutturale della matrice cementizia, la qualità del calcestruzzo, a parità di grado di idratazione α (e cioè di tipo di cemento, di tempo e temperatura di stagionatura), migliora com’è schematicamente illustrato nella Fig. 2.3. Sull’ordinata del diagramma di questa fi gura può essere riportato il valore della resistenza meccanica a compressione a 28 giorni (Rcm28), assunto come parametro globale per misurare la qualità del calcestruzzo.

2.2 IMPIEGO DEGLI ADDITIVI RIDUTTORI DI ACQUA/FLUIDIFICANTI

Gli additivi riduttori di acqua sono stati definiti come prodotti capaci di ridurre l’acqua di impasto a pari lavorabilità oppure di incrementare la lavorabilità a pari quantità di acqua di impasto (1). In questa seconda funzione, il termine più appropriato per indicare questi additivi è quello di fluidificanti (plasticizers in Inglese) o superfluidifi canti (superplasticizers in Inglese) a seconda dell’effetto più o meno pronunciato. Analogamente, quando gli additivi agiscono sulla riduzione di acqua possono essere indicati come riduttori di acqua (water reducers in Inglese) o super-riduttori di acqua (high-range water reducers in Inglese).
La distinzione tra riduttori e super-riduttori di acqua da una parte, e tra fluidificanti e superfluidificanti dall’altra, dipende sostanzialmente dal metodo di impiego di questi additivi. Nel primo caso (Fig. 2.4A) si aggiunge l’additivo e si riduce l’acqua in modo che la lavorabilità — misurata per esempio con lo slump — rimanga la stessa: l’efficacia dell’additivo è quantificata dalla riduzione di acqua (a), che — a parità di dosaggio di cemento (c) — si tramuta in una diminuzione del rapporto a/c e nel conseguente aumento di resistenza meccanica (Fig. 2.3). Nel secondo caso (Fig. 2.4 B), cioè quando gli additivi sono impiegati da fluidificanti o uperfluidificanti, l’aggiunta del prodotto avviene senza ridurre l’acqua di impasto e si registra l’aumento di slump: maggiore è l’aumento dello slump, maggiore è l’efficacia dell’additivo.
Esiste, infi ne, anche un terzo metodo di impiego (C) che in pratica è il più diffuso e consiste nell’aggiungere l’additivo riducendo sia l’acqua di impasto che il dosaggio di cemento in modo da mantenere costante il rapporto a/c con i seguenti vantaggi (Fig. 2.4 C):
• riduzione del costo del calcestruzzo perché l’incidenza dell’additivo è minore di quella del cemento;
• riduzione di tutte le proprietà negative del calcestruzzo legate ad un eccesso di cemento (ritiro igrometrico, gradiente termico provocato dal calore di idratazione) con benefi ci sulla riduzione del rischio di fessurazione di origine igrometrica o termica.
L’aumento di volume di sabbia (s) e di ghiaia (g) compensa la diminuzione del volume di acqua nella Fig. 2.4 A. L’aumento del volume di sabbia (s) a spese della ghiaia (g) riduce la segregazione del calcestruzzo più lavorabile (Fig. 2.4 B). Nella Fig. 2.4 C l’aumento di sabbia (s) e di ghiaia (g) compensa la riduzione del volume di acqua (a) e di cemento (c).

2.3 IL MECCANISMO D’AZIONE DEI RIDUTTORI D’ACQUA

Normalmente i granuli di cemento posseggono delle cariche elettrostatiche di segno opposto distribuite in modo casuale sulla loro superficie, cosicché l’insieme del sistema risulta elettricamente neutro dal punto di vista statico. L’origine di queste cariche elettrostatiche deriva dalla rottura dei legami ionici durante il processo di macinazione del clinker di cemento Portland (Fig. 2.5 A).
La frattura del clinker, per effetto del processo di macinazione, determina cariche di segno opposto sulle due superfici create dalla frattura stessa; tuttavia, poiché complessivamente le cariche elettrostatiche di segno opposto si equivalgono, la carica elettrostatica globalmente esistente in ciascun granulo è nulla o quasi neutra.
In presenza di un liquido come l’acqua, al momento della miscelazione del calcestruzzo i singoli granuli di cemento vengono movimentati e possono verificarsi fenomeni di attrazione tra le superfici con cariche elettriche di segno opposto appartenenti a granuli di cemento adiacenti: in queste condizioni si verifica un processo di agglomerazione noto con il nome di “flocculazione” (Fig. 2.5 A).
La flocculazione di un sistema di particelle solide sospese in un liquido, comporta un aumento di viscosità della sospensione rispetto alla situazione nella quale le stesse particelle risultano disperse, cioè non flocculate.
La dispersione può essere conseguita se al momento della miscelazione l’acqua di impasto contiene degli additivi riduttori di acqua le cui molecole siano in grado di essere adsorbite sulla superficie dei granuli di cemento (Fig. 2.5 B). In queste condizioni, attraverso un meccanismo che sarà meglio illustrato più avanti, i granuli di cemento sono ostacolati nel processo di flocculazione.
Nella Fig. 2.6 sono messe a confronto le osservazioni microscopiche di due sospensioni di cemento in acqua (a pari a/c) nelle quali in un caso (A) prevale la flocculazione, mentre nell’altro (B) prevale la dispersione per la presenza di un additivo riduttore di acqua. La parte delle foto corrisponde alla presenza del cemento mentre quella bianca corrisponde all’acqua.
Nella Fig. 2.7 sono mostrate le osservazioni visive che evidenziano microscopicamente due paste di cemento a parità di rapporto a/c: una è flocculata e l’altra è dispersa. Esse corrispondono alle due osservazioni microscopiche (A e B) della Fig. 2.6: si può notare come la pasta flocculata (A) risulti molto più viscosa della pasta dispersa (B) che risulta così fluida da poter essere colata come un liquido. Quando le due paste di cemento si ritrovano in presenza di aggregati, all’interno di una malta o di un calcestruzzo, esse determinano due situazioni reologicamente diverse quali quelle mostrate in Fig. 2.8: il calcestruzzo con la pasta di cemento flocculato (A) presenta un abbassamento al cono di Abrams (slump) molto minore di quello relativo al corrispondente calcestruzzo, più fluido, contenente la pasta di cemento dispersa (B).
La ragione per la quale un sistema flocculato risulta essere meno fluido del corrispondente sistema disperso, risiede nella difficoltà di movimento che presentano le “famiglie” dei granuli flocculati (A) rispetto alle “singole” particelle disperse (B). La flocculazione comporta un ingombro sterico” delle particelle agglomerate allorquando il sistema (in forma di pasta, malta o calcestruzzo) è sollecitato a muoversi. Al contrario, le particelle disperse, meno ingombranti, si
muovono più facilmente ed il sistema risulta essere più fluido.

Se è vero che un sistema disperso (Fig. 2.5 B) è più fluido del corrispondente sistema flocculato (Fig. 2.5 A), resta da chiarire perché la presenza di additivi riduttori di acqua comporta la transizione da un sistema flocculato in un sistema disperso. Per lungo tempo si è accettato, come meccanismo di azione, che questi additivi modifichino la situazione delle cariche elettrostatiche distribuite sulla superficie dei granuli di cemento (3).

In sostanza, in presenza di additivi le superfici di tutti i granuli di cemento verrebbero ad assumere una carica elettrostatica dello stesso segno (negativa) e pertanto le singole particelle tenderebbero a respingersi anziché ad agglomerarsi. La repulsione di carattere elettrostatico tra le particelle di cemento in presenza di questi additivi è stata documentata attraverso misure del cosiddetto potenziale zeta che in qualche modo testimonia la presenza o meno di cariche elettriche sulla superficie delle particelle di cemento.
Il potenziale zeta delle particelle di cemento è pressoché nullo quando sono sospese in un mezzo acquoso privo di additivi. In presenza di additivi riduttori d’acqua, invece, il potenziale zeta diventa negativo ed assume valori (in assoluto) crescenti all’aumentare del dosaggio di questi additivi.
In sostanza, la “catena” degli eventi per spiegare il meccanismo di azione degli additivi riduttori di acqua sarebbe la seguente (4):
a) gli additivi (portatori di cariche elettriche negative) si depositano sulla superficie dei granuli di cemento (adsorbimento superficiale);
b) per effetto degli additivi il potenziale zeta dei granuli di cemento (inizialmente nullo) diventa negativo;
c) le particelle di cemento si respingono reciprocamente per effetto della stessa carica elettrica (negativa);
d) la repulsione elettrostatica distrugge la flocculazione dei granuli di cemento che vengono così dispersi in acqua;
e) la dispersione dei granuli di cemento in acqua rende il sistema più scorrevole (fluido) per la riduzione o eliminazione della flocculazione.

Successivamente (5) è stato trovato che, accanto agli additivi melamminico (SMF) e naftalinico (SNF) capaci di disperdere i granuli di cemento in acqua e quindi di fluidificare la sospensione acquosa attraverso il meccanismo della repulsione elettrostatica (Fig. 2.5B), esistono anche additivi policarbossilici (PC) capaci di provocare la stessa azione disperdente-fluidificante senza tuttavia generare una carica elettrica negativa particolarmente significativa (cioè un potenziale
zeta particolarmente elevato). Nelle Figure 2.9, 2.10 e 2.11 sono mostrate rispettivamente la fluidità (spandimento della malta a pari a/c = 0.40), l’adsorbimento di additivo ed il potenziale zeta (in pasta) al variare del dosaggio di tre distinti additivi (SMF, SNF e PC) espresso come percentuale di sostanza attiva (secca) rispetto al peso del cemento.


Gli additivi SMF ed SNF, adsorbiti sul cemento, provocano la dispersione delle particelle attraverso una significativa variazione di potenziale zeta (Fig. 2.11), ed hanno come effetto risultante finale un incremento di fluidità della malta (Fig. 2.9): in questo caso la “catena” degli eventi da a) ad e) sopra menzionata appare essere una plausibile spiegazione del fenomeno disperdente-fluidificante per gli additivi SMF ed SNF.
Nel caso, invece, dell’additivo PC si registra un effetto fluidificante molto più evidente (a parità di dosaggio) rispetto agli altri additivi sebbene la variazione di potenziale zeta sia molto più modesta: in particolare, al dosaggio di 0.2% di additivo, il prodotto PC non provoca alcuna sostanziale modifica nel potenziale zeta delle particelle solide (Fig. 2.11) anche se esso, fortemente adsorbito sulla superficie del cemento (Fig. 2.10), fa aumentare considerevolmente la fluidità della malta cementizia (Fig. 2.9). Da tutto ciò consegue che il semplice adsorbimento di additivo sul cemento, anche in assenza di variazione di potenziale zeta e quindi di repulsione elettrostatica, può ridurre la flocculazione per effetto della semplice presenza di sostanze organiche che si depositano sulla superficie dei granuli di cemento.

Gli additivi per calcestruzzo – Capitolo 1

Additivi e aggiunte per calcestruzzo

Gli additivi chimici e le aggiunte minerali sono prodotti che vengono impiegati, insieme agli altri ingredienti principali del calcestruzzo (acqua, cemento e aggregati) per migliorarne le proprietà.

Gli additivi (1-5), solitamente in forma di liquidi e prevalentemente di tipo organico, sono impiegati in quantità relativamente piccole (≤ 5% sul cemento) rispetto a quelle degli ingredienti principali: salvo eccezioni, da qualche centinaio di grammi a qualche chilogrammo per metro cubo di calcestruzzo. Esprimendo il loro dosaggio rispetto alla massa di cemento, gli additivi sono generalmente impiegati in misura che varia da 0.01% fi no ad un massimo del 2-3%, con l’unica eccezione degli additivi acceleranti di presa (per spritz beton) e degli antigelo (per getti in climi molto freddi: -15°C) che possono raggiungere dosaggi molto maggiori (fino a 7-8%).

Gli additivi, pur con un costo unitario relativamente alto rispetto agli altri ingredienti del calcestruzzo, finiscono per incidere in modo relativamente modesto se riferiti a 1 m3 di calcestruzzo, soprattutto se si confronta il beneficio da essi apportato ed il costo alternativo che si dovrebbe sostenere in loro assenza per conseguire lo stesso beneficio.

Le aggiunte minerali (6), in forma di polvere di tipo inorganica, sono impiegate in quantità più elevate anche se generalmente più piccole di quelle degli altri ingredienti: esse sono dosate in misura del 5-30% del peso del cemento, con qualche eccezione per calcestruzzi molto articolari dove l’aggiunta può diventare prevalente rispetto alla massa del conglomerato.

Le aggiunte minerali presentano un costo unitario che può variare entro un ampio intervallo: da qualche centesimo di euro per chilogrammo (per i prodotti direttamente recuperati da altri processi industriali) fino a qualche decimo di euro per chilogrammo (per prodotti di intesi oppure sottoposti a trattamenti industriali più o meno costosi). Conseguentemente anche l’incidenza economica delle aggiunte minerali può variare entro un ampio intervallo: da qualche euro ad una decina di euro per metro cubo di calcestruzzo. Anche per le aggiunte, come per gli additivi, occorre però tener conto in un bilancio globale dei risparmi derivanti dal loro impiego accanto ai benefici prestazionali conseguiti soprattutto in combinazione tra loro.

Nella Tabella 1.1 è mostrato un quadro schematico che riassume le principali caratteristiche degli additivi e delle aggiunte.

 

1.1 CLASSIFICAZIONE DEGLI ADDITIVI

Esiste un numero considerevole di additivi disponibili sul mercato, tutti raggruppabili in un numero limitato di categorie in base alla loro azione ed alla loro funzione correlata con il tipo di beneficio che si intende conseguire nel calcestruzzo.

In realtà, ciascun additivo presenta quasi sempre, accanto ad una funzione principale, altre funzioni secondarie (correlate con benefici specificatamente richiesti) o anche effetti collaterali negativi di minore importanza dei quali occorre ovviamente tener conto all’atto della loro scelta ed impiego.

Una classificazione degli additivi in base alle loro funzioni principali, ma che tiene conto anche degli effetti collaterali negativi, è mostrata nelle Tabelle 1.2 e 1.3 dove sono anche indicate le principali azioni degli additivi stessi (3).

Nella Tabella 1.2 sono schematicamente mostrate le caratteristiche degli additivi più  comunemente e correttamente impiegati:

  • riduttori d’acqua (fluidifi canti, superfluidificanti);
  • ritardanti;
  • acceleranti;
  • anti-gelo;
  • aeranti;
  • riduttori di ritiro igrometrico;
  • viscosizzanti.

In realtà gli additivi fluidificanti e superfluidificanti, raggruppati in questa classificazione in un’unica categoria, dal punto di vista merceologico sono generalmente considerati due additivi distinti.

Nella Tabella 1.3 sono, invece, mostratele caratteristiche degli additivi speciali impiegati per scopi molto particolari e comunque di uso meno frequente rispetto a quelli della Tabella 1.2. Essi comprendono:

  • inibitori della reazione alcali-aggregato;
  • inibitori di corrosione;
  • coadiuvanti di pompaggio;
  • idrorepellenti;
  • coloranti.